Mathematical Techniques
Part 6. Fourier Expansion and Fourier Transfrom
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1. Fourier expansion of periodic functions.

1.1 Periodic functions
A function f(z) is periodic if it has the property

flz+ L) = f(z) (1)

for all x; the constant L is called the period of f(x). Examples of periodic functions are the
trigonometric functions cos z and sinz which have period 27. A function with period L can be
transformed into a function with period 27 by the substitution

2rx
Ty =" 2
y=-7 (2)
We shall therefore discuss the case of functions with period 27, but always being aware that our
discussion is generally valid for any periodic function.
Fundamental for the theory of Fourier expansions is the trigonometric polynomial

Yo(z) = % + Y (ay cos kz + by sin kz) (3)
k=1



which is periodic with period 27. In the next section we shall see that the trigonometric polynomial
can be used to yield an approximate represention of an arbitrary periodic function of period 27. As
a preparation for the following derivations we establish here the important orthogonality property
of the trigonometric functions: consider the integral

27
I = / cos mx cos nx dx, form #n (4)
0

which is taken by applying the trigonometric identity

cos o cos B = % [cos(a + B) + cos(a — )]

hence
1 o 1 . . B 27
L = —/ [cos(m + n)z + cos(m — n)z| dz = - sin(m + nje | sin(m - n)z =0
2 Jo 2 m-+n m-—n 0
On the other hand, for m = n the integral is
1 2
L = 5/ (14 cos2mz)de =7
0
We can summarise the result using the Kronecker § symbol
P 1 ifm=n
™10 ifm#n
hence o
I, = / cos mx cos N dx = mo, (5)
0
Similarly we can establish the following results:
2w
I, = / sin mx sin nx dx = 7o,y (6)
0
2w
I; = / cosmz sinnz dx = 0 (7)
0

The property of trigonometric functions, expressed by Egs. (5) to (7) for m # n, is called
orthogonality and one says that the trigonometric functions of multiples of x are a set of mutually
orthogonal functions.

1.2 Approximate representation of periodic functions by trigonometric polynomials;
Fourier coefficients
Let f(x) be a periodic function with period 2, i.e.

fz+2m) = f(z) (8)
and consider the following equation:
flz) = % + Y (ag cos kz + by sin kz) + Ry (x) 9)
k=1



Here we have on the r.h.s. the sum of the trigonometric polynomial

n
Yo(z) = % + > (ak cos kz + b sin kz) (10)
k=1
and a residual term R,(x). Our aim is to find expansion coefficients a,, and b,, such that X(z)
approximate f(x) as closely as possible in the sense that the mean square deviation of 3(x) from
f(z) over one period be as small as possible:

2w
(R%) = / R2(z)dr = min (11)
0
The necessary condition is given by
O(R7) O(R7)
nl _ nl — 12
Ba.. 0, and .. 0 (12)

This condition is also sufficient because of the linear dependence of R,(z) on the expansion
coefficients a,, b,, Thus if m > 0 we have

O(R2) 2 OR? > OR,
R N L7 — n =9 __ "
da, 0o Ot du 0 I da,, da
G 0% ()

= 2 [T 156) - @)

dx = 2/0% X(z) — f(z)] cos mzdx
= 2 [/0 Y (x) cos mxdx — /027r f(z) cos mxdx

oa,,

= 2 [wam - /O27r f(z) cos macdaj] =0
(13)

hence

27
Uy, = ;/0 f(z) cosmzdx (14)

and similarly we can show that Eq. (14) is valid also for aq (this was the reason for beginning the
Fourier polynomial with ag/2 rather than with ay, which would have led to different formulas for
ap and a,,, m > 0). Repeating the derivation also for b,, we find

1

2T .
by, = ;/0 f(z) sinmzdx (15)

It must be realised that in this derivation it was not important that we have taken the integrals
over the interval [0, 27]. Instead we could have chosen any interval of length 27, in particular the
interval [—m,m]. It is left as an exercise to repeat the derivation for this interval and hence to
show that

7r 1 7r
Ay, = —/ f(z) cos mzdzx and by, = —/ f(z) sinmzdx (16)
mwJ—7 T J—7
The coefficients a,, and b,,, defined by Egs. (14) and (15) (or by Eq. (16)) are called the
Fourier coefficients of f(z).

1.3 Example. Consider the function f(z) defined by

)_{ 0 ifze[—m,0

f(z) = ¢ ifze0n] periodic (17)

3



To find the Fourier coefficients we use Eq. (16), hence

1 s
ag = —/ :dezz
0

T 2
1
= - dz = 1 ()™
am, / x cosmx dx m27r[ (—1)™]
1 g —1)ym
by, = —/:Esinm:vd:v:( )
™ Jo m
and we have found the representation of f(z) as
n -1 k
= Z > { (—=1)¥] cos kx + % sin kx} + Ry (x)
k=1

An interesting result follows if we set x = 0: then f(0) = 0, cos kz = 1 and sin kz = 0, hence

"o1—(=1)k
= Z% + R,(0)
k=1
or
2 n 1

8 ,; k=17 " B (0)

and if we let n — oo we get a convergent series and R, (0) — 0, hence
s 1
- ,; (2k — 1)?
By similar techniques one can find closed expressions for many other series: see section 3,

Exercises and problems.

1.4 Even and odd functions; Fourier coefficients of even and odd functions
A function f(z) is called an even or symmetric function if it has the property

f(=) = f(a) (18)
and is called an odd or antisymmetric function if
f(=z) = —f(2) (19)

A function which is neither even nor odd can be represented as the sum of an even and an odd
function. Indeed, let f(x) be a function which is neither even nor odd, and let g(z) be an even
function and h(z) an odd function, i.e. g(—z) = g(x) and h(—z) = —h(z), and let

f(z) = g(x) + h(z) (20)
then, changing the sign of z, we have
f(=2) = g(=2z) + h(—z) = g(x) — h(z) (21)
then, if we add Egs. (20) and (21), we get



and if we subtract Eq. (21) from (20) we get

and, moreover, we see that the even and odd parts are uniquely defined in terms of f(x).

The property of even and odd functions which is of particular interest to us in connection with
Fourier expansions, is their behaviour under integration over symmetric intervals. Thus, let f.(x)
be an even function and consider its integral from —a to a:

/_aa fe(z)dr = /_Oa fe(z)dx + /Oa fe(z)dx (22)

and if we make the substitution  — —x in the integral from —a to 0 and use the symmetry

fe(—z) = fe(x), we get . .
| fe@de =2 [ f(@)d (23)

Similarly we can show that for an odd function f,(z) the integral over a symmetric interval [—a, a

vanishes: .
| Sl =0 (24)

Frequently we must take integrals over symmetric intervals of products of functions of definite
symmetry. Then it is useful to be aware that the product of two even functions or of two odd
functions is an even function, and the product of an even and an odd function is an odd function.

Important examples of functions with definite symmetry are the trigonometric functions. Thus,
cos r is an even function and sin z is an odd function.

Consider now the Fourier expansion of the function f(z). Its Fourier coefficients are given by
Egs. (16). Consider also the decomposition of f(z) into its even and odd parts,

f(@) = fe(z) + fo(z), fe(—z) = fe(2), fo(=2) = —fo(2)

hence
= %/_7; f(z) cosmxdx = %/_Z(fe(x) + fo(z)) cosmadr = %/OW fe(z) cosmzdx

and similarly

1 s

by = —/ f(z)sinmxdr = / fo(x) sin mzdzx
™J—m

Thus the Fourier coefficients a,, are determined only by the even part of f(z) and the b, only by

the odd part of f(z). It follows, in particlular, that the Fourier expansion of an even function is

a cosine series and the expansion of an odd function is a sine series:

n

fe(z) = Zakcoskx-i-R (x)

ao
2
folz) = ibksmkx—i—R (z)



1.5 Fourier series; completeness of trigonometric functions

In practice one is always content with approximate representations of periodic functions by
trigonometric polynomials. However from a mathematical point of view it is also of interest to
consider the Fourier series which is obtained by letting n — oo in the polynomial (9). One
can show that for a wide class of periodic functions f(x) the resulting series converges and the
residue R,(x) tends to zero. These conditions are known as Dirichlet’s conditions. They can be
summarised as follows:

If the periodic function f(x) has a finite number of minima, mazima and disconti-
nuities in one period and if the integral of | f(x)| over one period exists, then the Fourier
series converges to f(x) at every point of continuity; at a point a, at which f(zx) has a

finite discontinuity, the Fourier series converges to §[f(a —¢e)+ fla+¢€)]so0

Thus, for any periodic function f(z) that satisfies Dirichlet’s conditions we have
f(z) = % + Y (ay cos kx + by sin kz) (25)
k=1

with Fourier coefficients given by Eqgs. (16).

The property of the set of trigonometric functions {cos kx,sin kz}, that any function f(z)
from a wide class of functions can be represented by a linear superposition of the elements of the
set, is called its completeness. This property is by no means confined only to the trigonometric
functions: especially in quantum mechanics one encounters many different examples of complete
sets of functions.

1.6 Complex representation of Fourier series

When working with Fourier expansions of periodic functions it is usual to write the expansions
in terms of trigonometric functions. Less common is the mathematically equivalent representation
in terms of complex exponential functions. This alternative representation will be dicussed here as
a preparation for our discussion of Fourier transforms, which are the subject of the next section.

Let us write down the Fourier expansion of the periodic function f(x) of period 27, then
use Euler’s formula expressing the trigonometric functions in terms of complex exponentials, and
finally regroup the various terms:

[e.e]
flz) = % + Y (ax cos kx + b sin kx)
k=1
ao 00 eika: + e—ikm eikx _ e—ika:
= X b
2 " ,;1 (“’“ 3 Ty
Qo 1 & . ik . —ikz
= 5 + 5 Z [(ak — zbk)e + (ak -+ zbk)e ]
k=1
(26)
then we set ¢y = (ax — ibg)/2, hence
ao 00 ) [9) _
f(x) = 5 + Z Ckelkal + Z C}!;e—zk:z (27)
k=1 k=1



and make the substitution £ — —k in the second sum on the r.h.s, hence

=—+Zc e 4 Z c* et Z cre'” (28)

k=—o0 k=—00

where ¢y = ao/2 and c_y = cj. Note that the latter relationship between the complex Fourier
coefficients is a consequence of our tacit assumption of f(z) being a real function. If we generalize
the theory to complex functions f(x), then there is no relationship between the coefficients c_y
and cg.

To find the complex Fourier coefficients of a given periodic function f(x) we can either first
calculate the real Fourier coefficients ay, and by and use ¢, = ¢*;, = (ar —ibg)/2, or we can directly
proceed from Eq. (28): multiplying the equation by exp(—ik'z) and integrating over x from 0 to
21 we get,

2
/0 f(x)e *Fody = Z ck/ ik=k)z gy, (29)
k=—00

On the r.h.s. all integrals vanish except the one with &’ = k: indeed, setting n = k — k' we get

/ K ey = — ol — 0
0 mn 0
if n # 0, but for n = 0 the integral reduces to
2T
dr =27
0
We can summarize our last two results in one formula:
2n ,
/ e *K)2 dyy = OB (30)
0

where 6gr = 1if k = k' and = 0 if k£ # k' (Kronecker-§). Substituting into Eq. (29) we get finally

1

2 .
Ck = %/0 f(z)e *dx (31)

An interesting corollary of the complex representation of the Fourier expansion is obtained if
we substitute the Fourier coefficient from Eq. (31) into Eq. (28), hence

f@) =3 (g [ s ) et

and if we change the order of integration and summation, then

f(:v) _ % /OQW f(x') (_i eik(z—x')> dax’

or, with the notation

_ - 2
d(z—2x") o ooe (32)
we have the result or
flz) = / fl@)o(z —a')de!,  z € (0,2r) (33)
0



which is the definition of the Dirac ¢ function. Thus Eq. (32) is a representation of the ¢ function.
It is closely related to the representation of the § function in terms of a Fourier integral — see
Section 2.2.

1.7 Fourier expansion as a mathematical representation of spectral analysis

Our discussion of the Fourier expansion of periodic functions has shown that any periodic
function is a linear superposition of sinusoids of multiples of a basic frequency. The correspond-
ing amplitudes are uniquely determined by the function itself. In experimental physics one has
various procedures to decompose superpositions of sinusoidal waves into waves of the constituent
frequencies. This is called spectral analysis or spectroscopy. For instance in optics one uses either
a prism or a diffraction grating to decompose light into its spectral components. As a result the
frequencies and the corresponding intensities are measured. If we represent the incoming light by
the function f(¢) (now we use ¢ as the argument to remind us that we are considering a wave
which is periodic in time), then the Fourier representation gives us all frequencies contained in
f(t). The lowest frequency is called fundamental frequency, its multiples are called the harmonics.
The amplitudes for each of the frequencies are given by the Fourier coefficients. The intensities
are the squares of the amplitudes.

We conclude from this discussion that Fourier analysis is a mathematical model of spectral
analysis.

2. Fourier transform

2.1 Spectral analysis in the case of continuous spectra; Fourier transform

The Fourier method can be extended also to nonperiodic functions. In physical applications
this is of interest when there is a wave phenomenon with a continuous spectrum. In acoustics
one makes the distinction between sound, which has a discrete spectrum, and noise, which has a
continuous spectrum. In signal processing one is sometimes interested in a single pulse travelling
down a communication cable. In quantum mechanics an electron is represented by a wave packet
which can be understood as a superposition of sinusoidal wavelets with a continuous spectrum.
All these situations can be analysed by a method similar to that studied in the preceeding section.
The key to this analysis is the concept of the Fourier transform.

Consider a function f(x). Its Fourier transform g¢(k) is defined by

9k = [ f@)etda (34)

There is nothing profound about this definition. If we multiply a function of x by a function
of z and k£ and integrate over x, then we are bound to be left with a function of k. That’s really
all there is to Eq. (34). What makes this definition interesting is that we can get the inverse
relationship of f(z) in terms of g(k). This is the contents of the Fourier theorem which we derive
in the next section.

2.2 Fourier theorem

Consider the periodic function f(z) with period L. We can transform this to a function of
period 27 if we make the substitution z — 27z/L. In other words, we have for f(z) a complex
Fourier expansion

f(l‘): i CkeZWikx/L (35)

k=—o0



where
¢ 1 L2 —2mike/L
o f(x)e T (36)

T o —L/2
(cf. Eq. (31)).
Now denote 27k/L by wg. The sum over k can be transformed into a sum over wy, but then
the increment Ak = 1 (which is not written down by convention) becomes Awy = 2rAk/L, hence

fl@) = 3 clwr)e™ Awy
Wp=—00
1 L2 :
- — W, T
c(wg) o /_L/2 f(z)e dx

and finally we let L. — oo and Awy — dw; the sum over wy then becomes an integral over w. If
we also change the notation writing g(w) instead of ¢(w) we get the Fourier theorem

f@) = [ glwyerds (37)
o) = 5 [ e rds (38)

In our derivation we have inherited the unsymmetric positioning of the 1/27 factor from the
Fourier expansion. There is nothing to stop us from choosing a more symmetric notation, which is
used by many authors, where the Fourier transform and its inverse both have a factor of 1/v/27. At
the same time we note that the symbol w appears in Egs. (37) and (38) as a dummy variable. It is
more in keeping with the usual notation of physicists to use the symbol k£ as the partner of z — and
think of it as a wave number — and to use w as the partner of ¢, considering this pair as representing
frequency' and time, respectively. In the latter case one speaks about the transformation between
the frequency domain and the time domain. We can therefore write instead of Egs. (37) and (38)
the equivalent pair of equations

10 = o= [ s)ea (39)
o(w) = \/LQ_W [ rwean (40)

Finally we can also get the Fourier representation of the Dirac delta function if we substitute
f(t) from Eq. (39) into (40), hence

g(w) ! /OO (/Oo g(w')ei‘”’tdw') e Whdt

2T —00 —00

and hence, changing the order of integration over ¢ and w', we get

1 o0 [e’s} . [e’s}
—_ 1 1 (W —w)t — 1 ! o
g(w) 5 /_oo dw g(w)/_oo dte /_oo dw' g(W)d(w' — w)

where in the last step we have used the definition of the Dirac-6 function. Thus the Fourier
representation of §(w) is found to be

1 foo -
d(w) = o /oo dt ™" (41)

Lstrictly speaking circular frequency



2.3 Examples; matter waves and their representation by wave functions
Consider a wave pulse which, as a function of time, is represented by

| Rr it <T
Ft) = { 0 otherwise

Substituting into Eq. (40) we get

1 /T h T —iwT [2 sinwT
—_ w - w _ w — hT - 42
g(w) o /7T he ™'dt 5 (e e ) ~—T (42)

Thus we have found that the Fourier transform of the “tophat” function f(¢) is, up to a constant,
the sinc function, sincz = (1/z) sin z.
Another interesting example is the Fourier transform of a Gaussian wave packet

f(z) = he==/"

which is used as an example of a matter wave packet. The Fourier transform of f(z) is

—x2/202 —ikmdw

g(k)=\/L2—7r/(:6

which is evaluated by rewriting the exponent in the form of

k202 1(x+,k >2
A

and making the substitution z — u = z /o + iko, hence
g(k) = hoe™ k0)*/2

The interesting result is that the Fourier transform of a Gaussian is again a Gaussian. There
is also an interesting corollary to this result: we note that the parameter ¢ has the significance
of the half-width of f(z) at 1/4/e of its maximum, and similarly 1/o is the half-width of g(k) at
1/y/e of its maximum. These widths, denoted Az and Ak, respectively, are also referred to as the
root-mean-square deviations of their distributions. What is significant is that the product of Az
and Ak is independent of o, more precisely

AxzAk =1.

In quantum mechanics a relation of this kind is known as Heisenberg’s uncertainty relation. It
must be realised that there is considerable latitude in the definition of the widths which we have
used in this discussion. However, any consistent definition leads to the result that the product of
the widths is independent of o, and any reasonable definition of the widths results in a product
which is a number of order 1 to 10, all of which are perfectly acceptable to quantum mechanics.

3. Exercises and problems
3.1) Find the Fourier expansion of the function
| =1 ifze[-m0] o
f(z) = { 1 if 3 € [0, 7] periodic

T 1 1 1
h hat - =1—=-+ - — -4+ ...
ence deduce tha 1 3+5 7+

10



3.2)

3.3)

3.4)

3.5)

3.6)

3.7)

Find the Fourier expansion of the function
flz) = |z| if x € [-m, 7] periodic

hence deduce that " — 14 -+~ 4.4
ence deauce a 8 = 9 25 (27’1,—]_)2

Derive the formulas for the Fourier coefficients of a periodic function of period L.

2 b 2 2 b 2
Answer: a, = —/ f(z) cos e dez, b, = —/ f(z)sin 7
L Jo L Jo L

Find the Fourier expansion of the function f(z) = 2 for z € [~L/2,L/2], periodically
continued with period L, and deduce a series representation of 72.
Answer: The Fourier expansion of f(x) is

P& (-1 2 e

fl@)==+= > cos —

T 2 2
12 7™ = n

o
hence, putting z = 0, we get 7> = 12> (—1)"""/n.

n=1

Find the Fourier expansion of the function f(z) = 222 — z* for z € [-1, 1], periodically
continued with period 2, and hence show that

g1
—nt 90
Find the Fourier transform of f(z) = (2 + o? o

Note: reduce the Fourier integral to a manifestly real form, then consult a table of definite
integrals.

o0
Answer: /

—0o0

(x2 + a2)71 exp(ikz) dx = (7 /a) exp(—ak).

Prove the following theorem: if f(¢) is a periodic function with period 7" and a,, and b,, are
its Fourier coefficients, then

/OT [f(O)) dt = g Eag +§ (a2 + bﬁ)]
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